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The behavior of collective phonon waves interacting with a drifting electron distribution under conditions 
of acoustic gain in piezoelectric materials is analyzed and discussed. The electrons are bunched by the 
phonons, and the resulting electrostatic fields become an important element in the collective-wave behavior. 
This results in a tendency to set up an electrostatic oscillation involving phonons as well as electrons. The 
oscillation frequency is the plasma frequency for electrons with mass heavily dressed by the phonons. In CdS, 
this frequency is about 105 sec-1. The collective wave exhibits a great deal of dispersion and is greatly ampli
fied at frequencies near the oscillation frequency. It is believed that the spontaneous oscillations observed in 
piezoelectric materials at large drift velocities are the collective waves described in this analysis. The oscilla
tions involve wavelengths which are simultaneously those of the electrostatic oscillation frequency and mul
tiples of the length of the crystal involved. 

I. INTRODUCTION 

THIS paper analyzes the collective behavior of elec
trons and a strongly coupled band of phonons 

(hereinafter referred to as the active band) under con
ditions of acoustic gain. I t is found that a new collective 
phenomenon exists which can best be characterized as 
an electrostatic oscillation in which the electrons and 
the active-band phonons participate. I t is believed that 
those spontaneous current oscillations observed under 
conditions of acoustic gain which are not associated with 
simple ultrasonic ringing are related to this phe
nomenon.1 The predictions of this theory agree qualita
tively with the observed oscillations as a function of 
electron density in CdS. Spontaneous oscillations, which 
have been reported in other materials,2 may also be re
lated to the collective phenomenon described here. 

In a previous theoretical development of collective-
wave propagation3 (hereinafter referred to as paper I) , 
it was shown that a restricted band of phonons could be 
amplified by drifting electrons and support collective 
phonon waves similar to second-sound propagation in 
He I I . However, in that analysis, the accumulation of 
charge which is expected to be associated with the col
lective wave was not included. This restricted the 
validity of the analysis to short wavelengths where 
charge accumulation is least important. 

The effects of this accumulation become important, 
and even dominant, at long wavelengths, giving rise to 
the oscillation behavior mentioned above. In the case of 
the spontaneous oscillations, wavelengths are the order 
of the size of the crystals. 

The behavior of these collective waves can be likened 
to the oscillatory motion of a mass supported by two 
springs in parallel whose spring constants can be altered. 
The frequency of oscillation will be determined by the 
stitlest spring. In the analogy to the collective wave, one 

1 H. Kroger, E. W. Prohofsky, and H. R. Carleton, Phys. Rev. 
Letters 12, 555 (1964). 

2 J. B. Gunn, Solid State Commun. 1, 88 (1963); J. B. Gunn, 
IBM J. Res. Develop. 8, 141 (1964). 

3 E . W. Prohofsky, Phys. Rev. 134, A1302 (1964); R. W. 
Damon, H. Kroger, and E. W. Prohofsky, Proc. IEEE 52, 912 
(1964). 
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spring would be that of the phonon-density gradient. 
This spring constant increases quadratically with collec
tive wave vector. The other spring is that of the electro
static forces due to electron density fluctuations. The 
"spring constant" of this force increases for smaller wave 
vectors, as the electron bunching is greatest for long 
wavelengths. In the short-wavelength limit, the collec
tive wave will be dominated by the phonon-gradient 
"spring," and the wave will be similar to second sound, 
somewhat affected by, or dressed by, electrons. In the 
long-wavelength limit, the wave will be dominated by 
electron forces somewhat affected by, or dressed by, 
phonon-density fluctuations. In the intermediate-wave
length region the two "springs" are roughly equal, and 
the collective wave has the nature of both an electro
static oscillation and a phonon-density wave. The spon
taneous oscillations are associated mainly with the 
electrostatic wave aspects of the collective waves. 

In Sec. II , a phenomenological description of the col
lective wave is given which stresses the difference be
tween the interaction of the collective wave with elec
trons and the interaction of a coherent ultrasonic wave 
with electrons. The coupling of these collective waves 
with the experimental configuration used in observing 
spontaneous oscillations is discussed. 

In Sec. I l l , first-order moment equations, represent
ing the phonon-crystal momentum, phonon energy, 
electron momentum, electron density and Poisson's 
equation, are simultaneously solved, and the resulting 
dispersion relation for the collective behavior of these 
elements is analyzed. The use of these moment equa
tions is similar to the use of hydrodynamic equations in 
that the variables are equivalent to densities and drift 
velocities. The resulting solutions can be separated into 
three distinct regions: (1) the short-wavelength region 
which is the simple collective-phonon propagation 
analyzed in paper I, (2) the intermediate-wavelength 
region in which spontaneous oscillations are likely to 
occur, and (3) the long-wavelength region in which the 
collective wave degenerates into an electron-density 
fluctuation traveling at the electron-drift velocity. A 
cutoff for the collective waves occurs at some frequency 
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FIG. 1. (a) The large-amplitude sine wave (solid line) with 
wavelength w represents the electric potential associated with a 
coherent sound wave in piezoelectric material. The accumulation 
of electrons in regions of positive potential reduces the potential. 
The sound wave with accumulated charge is represented by the 
broken-line sine wave. The largest amount of charge accumulation 
which can occur would completely counterbalance the piezoelectric 
potential, in which case no further electron attraction occurs. 
(b) The broken sine wave in (b) represents the density of phonons. 
The phonon distribution has a density fluctuation which corre
sponds to a collective wave with wavelength W. There is no 
coherent electric potential associated with this wave. The local 
electric potentials are associated with the short-wavelength 
phonons w<ZW and are represented by the jagged lines contained 
within the density fluctuation. The individual electrons interact 
with the potentials of individual phonons. The total effect of the 
phonon-density fluctuation with period W is to give rise to a 
resistance fluctuation felt by the entire electron distribution with 
period W. (c) The resistance fluctuation causes the accumulation 
of space charge diagrammed in (c). Since no net piezoelectric 
potentials exist over distances W the only contribution to coherent 
potentials comes from the accumulated charge. The phase relation
ship between charge density and electric potential in this situation 
is opposite to that which exists in (a). The electric fields due to 
charge accumulation represented by arrows in (c) are such as to 
increase phonon emission in the regions of highest phonon density. 

below the intermediate region. No wavelike solutions 
exist for all lower frequencies. 

In Sec. IV, the behavior of the spontaneous oscilla
tions predicted by this analysis is described. 

II. PHENOMENOLOGICAL DESCRIPTION 

A "phonon fluid" may, in principle, propagate a den
sity fluctuation wThich is similar to a sound wave in 
ordinary fluids. The phonon-density fluctuations set up 
temperature gradients which play the same role as 
pressure gradients which would be set up by the density 
fluctuations in ordinary fluids. For these waves to exist, 
however, the loss or gain of momentum per cycle must 
be a small part of the total momentum associated with 
the wave. 

Under conditions of acoustic gain, the large electron-
drift velocity can supply momentum to a restricted 

group of phonons which can overcome the usual losses, 
making collective-wave propagation possible. 

In paper I, it was shown that one would expect this 
to be the case in CdS, where the phonon fluid was com
prised of a band of piezoelectric phonons with frequency 
centered about tio)/vs

2~rne*, where vs is the velocity of 
sound and m* the electron effective mass. The exist
ence of phonon-phonon collision losses4 would cause the 
higher frequency phonons to be damped more heavily 
than those at lower frequencies. Because of this, the 
phonons participating in collective phenomena may be 
of lower frequencies than indicated by the maximum in 
the analysis of the gain. These phonons can be con
sidered a somewhat isolated fluid as they interact 
strongly with each other via higher order electron-
phonon interactions and are fairly well isolated from 
other phonon modes of the crystal by a relaxation 
bottleneck. 

The interaction between electrons and such a collec
tive phonon wave is considerably different from the in
teraction between electrons and a single coherent sound 
wave. For example, a coherent piezoelectric sound wave 
appears to the electrons as a sinusoidally varying elec
tric potential. This is diagrammed in Fig. 1(a). The 
electrons tend to accumulate in the regions of positive 
potential.5 This accumulation of negative charge, how
ever, decreases the potential, reducing the tendency 
to accumulate more charge. This process cannot make 
the regions of high-electron density regions of negative 
potential, since the reason for further charge accumula
tion vanishes at zero potential. 

In the case of a collective phonon wave, there is no 
coherent piezoelectric potential associated with the col
lective wavelength. This case is diagrammed in Fig. 
1(b). The coherent potentials are associated with the 
individual phonons making up the collective wave, and 
these phonon wavelengths w are considered small com
pared to the collective wavelength W. The phonons 
making up the collective wave are randomly distributed 
with random phase within the collective wave; only the 
density of the phonons varies coherently. The regions 
of large phonon density appear as regions of large resist
ance in electron flow. Drifting electrons will tend to 
bunch against the high-resistance regions as diagrammed 
in Fig. 1(c). Accumulations of space charge over dis
tances of the order of collective wavelengths have nega
tive potential, as there is no long-range piezoelectric 
potential to overcome. 

The electrostatic fields associated with the space 
charge are represented by arrows in Fig. 1(c). These 
fields cause the larger voltage drop which occurs across 
regions of large resistance. The fields are oriented so as 
to accelerate the electrons in the regions of large phonon 
density and deaccelerate the electrons in the regions of 

4 T . O. Woodruff and H. Ehrenreich, Phys. Rev. 123, 1553 
(1961). 

5 D. L. White, J. Appl. Phys. 33, 2547 (1962). 
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low density. In addition, the large phonon density 
stimulates a greater number of phonon emissions in 
these regions. That is, large resistance implies greater 
electron-phonon interactions. This selectivity in the rate 
of emission further increases the phonon density in 
dense regions which in turn increases the space-charge 
accumulation, etc. In this sense, these phonon-electron 
density distributions form a normal mode. It is different 
from most normal modes, as it requires external elec
tric fields to give rise to the necessary electron-drift 
velocities. 

Returning now to the situation considered in paper I, 
any propagating collective-phonon wave in the presence 
of rapidly drifting electrons will cause a bunching of 
electrons. In the limit of small electron bunching, the 
repelling potentials associated with the bunching cause 
an increase in the frequency. This frequency rise be
comes more important at lower frequencies and it 
brings about an increase in the phase velocity of the col
lective wave. 

In the intermediate-wavelength region the collective 
wave phase velocity becomes comparable to the electron-
drift velocity, and the bunching of electrons within the 
wave greatly increases. In this region, the effect of 
charge bunching and the electrostatic field become of 
comparable importance to the phonon temperature 
fluctuations, and the character of the collective wave is 
considerably modified. At these intermediate wave
lengths, the negative potential in the region of large 
electron density is similar to the situation which occurs 
in a plasma oscillation, and the electrostatic field would 
give rise to oscillatory motion of the charged particles. 
However, the electrons are not free to respond to this 
field as they are strongly coupled to the phonon density 
distribution. The only motions available to the elec
trons are those which displace the phonon density as 
well. The mass associated with this behavior is the com
bined mass of the phonons and electrons, which is 
essentially the phonon mass. The wave in this region is 
amplified since its phase velocity is comparable to, or 
less than, the electron-drift velocity; and energy trans
fer to the collective wave can occur. 

In this intermediate region, where the frequency of 
the wave is increased by the electrostatic or "plasmalike 
effects," the dispersion curve ti(Q) can be flat or even 
have negative slope. At still lower frequencies, the dis
persion curve is modified, as the unmodified electro
static wave would have a phase velocity greater than 
the electron-drift velocity. This would cause the elec
tron and phonon-density fluctuation to become de
coupled. The modified dispersion relation in this region 
degenerates into an electron density fluctuation travel
ing at the electron-drift velocity and locally causing dis
tortions in the phonon distribution. This situation is 
highly unstable, as the collective wave is in resonance 
with the electron-drift velocity, causing the growth rate 
of such a wave to exceed the frequency. The wavelike 

solutions in this limit have no meaning and do not rep
resent modes of the system. 

The spontaneous oscillations occur when a feedback 
mechanism exists which can maintain oscillations. The 
feedback mechanism can exist when the wavelength of 
the collective wave becomes comparable to the length 
of the crystals. If this wavelength is in the' intermediate 
region, large electrostatic fields extending over the length 
of the crystal will be present. The application of a fixed 
voltage across the crystal, from a low-impedance source, 
will select those electrostatic waves which give rise to 
time-independent voltage drops across the crystal. The 
external circuitry applies a boundary condition which 
in linearized form becomes 

I Efcfidx^O, (2.1) 

where Ei(x,t) is the ac part of the electric field of the 
collective wave. 

As pointed out previously,1 in a macroscopic view, 
the effect of space charge and its associated eleotro-
static field would be described in terms of a greater volt
age drop occurring over the regions of large phonon 
density. With a fixed voltage across the crystal there 
would be a smaller voltage drop across regions of low 
phonon density. This difference in voltage across various 
regions gives rise to differences in the phonon emission 
in the different regions, and this, coupled with a flow of 
the phonon-density fluctuations down the crystal, would 
give rise to oscillations. 

III. SOLUTION OF THE MOMENT EQUATIONS 

The model system being studied consists of a free-
electron distribution which is strongly interacting with 
a particular group of phonon states called the active 
phonon band. The rate of interaction of the electrons 
and the active-band phonons with other phonon states 
(and all other degrees of freedom of the crystal) is con
sidered to be much slower than the rate of interactions 
between the electrons and the active phonon band. It is 
assumed that the loss of crystal momentum and energy, 
by the system to the other degrees of freedom, can be 
adequately described by relaxation-time approxima
tions. The transport properties of the active phonon 
band must satisfy the energy and crystal-momentum 
conservation equations 

(d/dt)(S)+(d/dxMvjS)=AScol, (3.1) 

(d/dt){PMd/dxMP*>i) = APiooi, (3.2) 

where the brackets ( ) imply a summation has been 
taken over all states making up the active phonon band, 
8 is phonon energy, Vj is the jth. component of phonon 
velocity, and Pi is the ith. component of the phonon-
crystal momentum. These equations have been dis
cussed in Paper I. 
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Similarly, the transport properties of the electron dis
tribution satisfy the equations of momentum and par
ticle conservation 

d d /df v 
—(pi)-\ (vJpi)-Eje\ — P i ) = &P% coi, (3.3) 
dt > dXj \<9/>y / 

(d/dt)(n)+ (d/dXj)(vsn) = 0. (3.4) 

In this case, the brackets imply a summation over all 
electron states, pi is the ith. component of electron mo
mentum, Vj is the jth component of electron velocity, n 
the electron density, e the electronic charge, and Ej is 
the j t h component of the electric fields. 

When local fluctuations in the electron density occur, 
electrostatic fields are set up. The fields, due to these 
space-charge effects are described by Poisson's equation 

(d/dXj)Ej= (iwen/e), (3.5) 

where e is the dielectric constant. When the electrons 
and phonons are strongly interacting, and when dis
tortions in the distribution of either affect the interac
tion rate, Eqs. (3.1)—(3.5) should be solved simul
taneously. Equation (3.3) can be simplified by restrict
ing the solutions to frequencies much smaller than the 
frequency of electron relaxation. The frequencies here 
are the collective-modulation frequencies 12, not the fre
quency of individual phonons co which may be a part of 
the system. In these low modulation-frequency regions, 
the transport behavior of the electrons is determined by 
the electric fields acting on them and the resistance they 
encounter. Equation (3.3) becomes 

eE[(df/dk)p2=A(p)coi- (3.6) 

In this equation, the electron inertial terms have been 
ignored. This is equivalent to excluding all electron-
plasma effects. 

As in Paper I, it is assumed that the disturbances in 
both the electron and phonon distributions can be de
scribed in terms of departures from equilibrium dis
tributions. This requires a rate of normal collisions 
within the system which is fast compared to the fre
quencies of interest 0. I t is assumed that to first order 
these disturbances can be described by macroscopic 
parameters which correspond to net-drift velocities and 
quasiparticle densities. The simplest distribution func
tions which incorporate these parameters are 

iV(w,g) = [ e x p ( ^ - ^ / K ( r 0 + r 1 ) ) - l ] - 1 (3.7) 

/ W , = N ,r.-—~)+1J • 
(3.8) 

where T0 is the ambient temperature, Ti the local varia
tions in phonon temperature, n0 the ambient electron 
density, n\ the local variations in electron density, va 
the electron-drift velocity, and v± the local variations in 

electron-drift velocity. Making use of a linearized ex
pansion of Eqs. (3.7) and (3.8) to evaluate the moments 
on the left-hand side of Eqs. (3.1), (3.2), (3.4), and 
(3.6), they become 

(d/dt)M\1+(d/dx)y'CT1=(AP)col, (3.9) 

(d/dt)CT1+(d/dx)D\1=vs(AP)coU (3.10) 

(-»f»iu/r6)(Eo+£i) = (Ap)00iJ (3.11) 

d d d 
—ni+Vd—fii+n0—fli=0, (3.12) 
dt dx dx 

where y^l/y/3 because of the angular spread of the 
various phonons contributing to the transport of the 
collective wave 

P 1 r cosdfiq 
M~—=— / fiqcosO 

X 8x 3 J g<gmax 

XNo(q)tNo(q) + iyfiq9 (3.13) 

I f fiq cos# 
D= / {fivsq)(vs cos(9) 

XNo(q)lN0(q)+iy*q. (3.14) 

D/M~vs
2, and C is the phonon specific heat summed 

over all states; q<qmax, where qmai-x is the upper limit of 
the active-phonon band. Extending the lower limit of 
these integrals to ^ = 0 , even though long-wavelength 
phonons play little or no role, does not greatly affect 
these parameters. M is, in a sense, the inertial mass per 
unit volume of the active phonon band. 

The expression {(df/dk)p) has been replaced by 
nnifi/Te, where JJL is the normal mobility assumed con
stant, i.e., evaluated at drift velocities less than the 
sound velocity where no saturation effects occur, and 
where a simple relaxation time re is sufficient to de
scribe the resistive processes. 

When the electron-drift velocity is greater than the 
velocity of sound, an electron-population inversion exists 
with respect to phonon emission. In such a case, the 
right-hand side of Eqs. (3.9)-(3.11) can be written in 
linearized form as discussed in Paper I as 

(AP) c o l=Xv,+ F X i + Z » i - (MXi/rp) , (3.15) 

(A£) c o l=^(AP) c o i , (3.16) 

(A£)ooi= - X v i - YXx-Zm 
— Uno+rii)m(vd+vi)/T J , (3.17) 

where X is the linearized coefficient of the increase in 
local phonon emission due to local increases in the 
electron-drift velocity, Y is the coefficient associated 
with the local increase in stimulation occurring with in
creases in Xi, and Z is the local increase in emission due 
to larger local electron densities. Because the interac-
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tion is basically due to velocity-induced population in
versions, we expect Z/X or Z/Y to be small except at 
largest drift velocities. 

I t should be pointed out that the phonon emission 
term developed in Paper I applies only when qC>l, 
where q is the wave vector of the phonon in the collec
tive wave, and t is the electron mean free path. For 
those phonons participating in the collective wave 
which do not satisfy this condition, one should use an 
interaction term based on a classical analysis such as 
that of White.5 At present, it is not completely clear 
which phonon frequencies are most important in the 
collective wave, as the rate of phonon-phonon collision 
losses is not known. I t has been shown that the mixing 
rate for classical phonons {ql< 1) under gain conditions 
is quite fast,6 and these phonons could take part in col
lective wave propagation. In any case, one can define an 
electron-phonon interaction term which can be linear
ized in some region as described above, and the equa
tions then become 

— M \ + — 7 2 C T i = (Y-M/TJXX+XVX+ZU! , (3.18) 
dt dx 

~-CTi+—D\1=vs(Y-M/rp)\1+vsXv1+vsZn1, (3.19) 
dt dx 

mjjL n§m\x 
—E0ni-\ Ex 

/ nom\ mvd 

= - ( XH k - Y\1-Zn1+—n1, (3.20) 

d d d 
—wH Vdfii-\—-n0vi = 0, (3.21) 
dt dx dx 

d 4:7re 
— # ! = ni. (3.22) 
dx e 

In infinite and isotropic material, one would look for 
plane-wave solutions to exist where 

Tu\hvhnhEx cc <*(o«-«*>. (3.23) 

Substituting Eq. (3.23) into Eqs. (3.18)-(3.22), one can 
solve for the dispersion relation of the combined system, 
which is 

n$Z A r A 

X X L M 

SV n0Z n 
Ma^-Tp-Wa5 rv~

lQah , (3.24) 
X X J 

H. Kroger, Appl. Phys. Letters 4, 190 (1964). 

where the undisturbed roots of the equations are 

a1=(il+yv,Q), (3.25) 

ai=(Q-yv.Q), (3.26) 

az=(tt-vdQ), (3.27) 

a^itt-fxEoQ), (3.28) 

a 6 = ( Q + 7 ^ ) , (3.29) 
and 

mm ^we2no 
O0

2 = cop
2= , (3.30) 

M eM/tlo 

A=Y-M/TP, (3.31) 

n0m/Te 
V = . (3.32) 

X 

Qo is a plasma frequency for charged particles with the 
charge of an electron and a mass M/n0, which is the 
phonon mass per electron. 

The quantity A is related to the net stimulated rate of 
growth of the phonon crystal momentum. As pointed 
out earlier, Y is that part of the momentum transfer 
driven by the ac phonon amplitude. The term M/T.P is 
the momentum loss driven by the same ac phonon ampli
tude. The term X is the rate of crystal momentum trans
fer driven by displacements of the electron distribution, 
as distinguished from F, which is driven by the phonon 
displacement. This momentum-transfer term is not 
selective, as momentum is pumped to both the ac 
phonon wave as well as the dc thermal background. The 
ratio of A/X, then, is a measure of both the viscosity 
and selectivity of the electron-phonon collective-wave 
interaction. The larger this ratio is, the better the 
coupling of the ac component of the phonon wave to the 
electrons. 

The factor n^mlre is the rate of usual resistive losses 
of electrons in the absence of inverted populations and 
strong coupling to phonons. The factor X is also that 
part of the electron resistive losses specifically related 
to the inverted population. I t is the term responsible 
for the saturation of currents observed when Vd>v8. The 
factor rj is the ratio of these two electron loss mecha
nisms. The cases of interest are assumed to have strong 
interactions, and we assume for simplicity that rj<£l. 
However, TJIJLEO is comparable to vj. In the absence of a 
very strong electron-active phonon-band interaction, 
Vd = fiEo. When the current is saturated, one expects v& 
to be reduced from fiEo by the ratio r\; therefore, 

r)[j,Eo~Vd. (3.33) 

A physically revealing approximate solution of Eq. 
(3.21) can be made for very short wavelengths. From 
the previous analysis in Paper I, one expects that at 
short wavelengths 

o«7t>.e, (3-34) 



A 1736 E . W. P R O H O F S K Y 

where yv8<v8S
vd, and the root a 3 is far from resonance. 

I n this case, one can divide E q . (3.24) by 0:3 and use 
Eq. (3.34) to eliminate the ratios of tt/Q which occur in 
the denoninator. 

Substi tut ing from Eqs . (3.25)-(3.29), this becomes 

W = yhs*Q2+tto 
7(1+7) A 

l{vd/vs)-yJ_2{vd/vs)-y-]X 

fxEQ 
( ] „ -

[2{vd/vs)-y-]l 
+i— ( h . (3.35) 

[2(vd/vs)—y~J-\M rpJ Vd—yvs rvJ 

The solution, Eq. (3.35), is like that of an electrostatic 
wave. The value of 12 rises above the linear "sound-like" 
value of yvsQ and approaches a finite frequency at 
Q=0. This frequency is the heavy-mass plasma fre
quency O0 modified by the ratio 

7(1+7) 

1 [_(yd/i)s)-y~][_2(vd/vs)-y~] 

1/2, A v 1/2 M v l 

\x/ ~\x) 
(3.36) 

T h e ratio A/X as pointed out before, contains effects of 
viscosity of the phonon distribution and the selectivity 
of the coupling of ac par t s of the electron and phonon 
distributions. This solution is wha t one would expect 
from the phenomenological discussion of Sec. I I , if the 
electron-drift velocity were always greater t h a n the 
phase velocity of the solution. However, a t small values 
of Q, this dispersion curve crosses t h a t of a3 and the 
solution is no longer valid. 

A bet ter solution, valid for small values of Q, comes 
from dividing b y a i , which is far from resonance for all 
forward traveling waves. Equa t ion (3.24) becomes 

n0Z 
0:20:3+rjaia4~\ Qoir\-p—&o 

- { • 

X 

M A a3 
- a 2 — % 2 + V—Pa±—P 

where 
X M 

J ( l + 7 ) < 0 = ««/ai<l . 

n0Z -1 
l Q , (3.37) 
XTV J 

(3.38) 

Since ??<<Cl, we m a y drop the terms containing 77, ex
cept for those which contain rj^Eo. A simplification can 
be made by letting 

vj = vd+ WEQ- (noZ/X); (3.40) 

and Eq . (3.39) becomes 

r ( A M 0\-] 
O 2 - (yv3+vd

f)Q+ihv Go2 J 

A / A 
XQ+vd'yvsQ

2+l3--ttQ2+il rj—fxEo 
X \ M 

M P Pn0Z \ 
QQ*yv9 vd+ T ^ 1 1(2 = 0 , (3.41) 

X Tp X 1 

0=§(t;/+7^)e±(l)3 / 2((a2+J2)1 / 2+a)1 / 2 

-(V2){CO']±[(|)5 / 2((«2+^)1 / 2-a)]1 / 2}, (3.42) 

where 
A 

a= (vd'-y>.)*Q*-4fr-SL<?-Q!*, (3.43) 
X 

b=2Q^ 
M 

b=2Q\ Sl0
2—(vd'-yv8) 

X 
P y 1 
-{vd

f-yvs)+p—2wE, , (3.44) 
Tp M l 

M P A 
0 ' = — floH y—. 

X Tp M 
(3.45) 

T h e solution, Eq . (3.42), is correct for 6 > 0 , which is 
true for Y > T P ~ 1 . There are two solutions: a higher fre
quency one which has only negative terms in Im(12) 
and is therefore always damped, and a low-frequency 
solution which has positive terms in Im(12) and is ampli
fied. The analysis of Eq . (3.42) is simplified b y setting 

a=(vd'-yv8y(Q*-Qo>), (3.46) 

b = 2(vd'-yvs)*CQ, (3.47) 
Thus , P shows only slight 12, Q dependence and can be 
considered constant . 

Subst i tut ing Eqs . (3.25)-(3.29) into Eq . (3.37) gives 

/ n0Z\ 
(1+T?)122—( vd+yvs+r)yvs+r]fxEo——JQQ+yv, 

where 
4:p(A/X)Q0

2+tt'2 

Q^—-- — . (3.48) 
(Vd —yv,)2 

t n0Z\ A r A 

\ X J X L M 
Q) 

M j8 "I 
—WiQ-jVsQ) (O-CdQ) . (3.39) 
X T„ J 

Region 1. The short-wavelength limit is defined by 
Q»Qo. In this limit 

Li((a2+b2y/2+a)J/2=(va'-yvs)Q-U^'-yvs)Q0 

X(Qo/C)+i(vd'-yvs)C(C/Q), 
(3.49) 

[K(a 2 +^ 2 ) l / 2 - a ) ] 1 / 2 =(^ ' -7^ )C+K^ ' -70<3o 
X(Q»/C)(Qo/Q)*. (3.50) 
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The solution capable of amplification is 

R e ( O ) = T ^ < 2 + K ^ ' - 7 ^ ) ( ( ? o 2 - C 2 ) ( l / 0 (3.51) 

2Im(Q)=(vd'-yvs)C-Q' 

+Hvd-yv*)Qo(Qo/C)(Qo/Qy. (3.52) 

Region 2. The intermediate-wavelength region where 
Q~Qo- Let Q=Qo+q where <?<3C()o; then the amplified 
solution is 

Ke(Q) = i{(va'+yv.)-(—) 
L W 

X (vS-yVsUQo+i j (vd'+yv.) 

2 Im(£l) = (vd
f-yvsXCQo)1/2-n' 

value for Q—>0. At some value of Q, Im(12)>Re(S2), 
and the wavelike solutions cannot be considered modes 
of the system. The detailed behavior of the waves de
pends on the ratio C/QQ, where 

C/Qo 
/ M 

= Q o 2 — 
\ X 

M Y rjnEo 
+2/3-

M (vd'—yva) -y 
/ [ - ' A / M /5 \ 2 " l 1 / 2 \ 

M 4̂ -O0
2+f V - + - J J. (3.59) 

This ratio can be larger than one only for large Y/M. 
The last two terms in the numerator can be considered 
a measure of the net-phonon amplification by the drift
ing electrons, and the denominator is the frequency of 
the electrostatic oscillation. When this ratio is large, 
the phonon amplitudes become so large as to dominate 
the properties of the collective wave. The contribution 
from the first term in Eq. (3.59) is small, provided 

1 "»™»' " Q0 

- i[( | )1 / 2-(-)1 / 2]( , / -W?. (3.54) UA/MXX/M)!'^1 

or 
tto 

Region 3. The long-wavelength region where Q<Qo. Ex
panding to first order in Q/Qo, the amplified solution 
becomes 

Re(0) = i ( ^ , + 7 » . ) e - i ( ^ , - 7 f . ) C ( g / O o ) (3.55) 

2Im($) = (vd'-yv8)Q0-a'' 
-ll-(C*/QQ>)Jvd'-yvs)Q(Q/Qo). (3.56) 

I t can be shown that the wave is amplified in all three 
regions by combining the ^-independent terms in 
Im(12). Equation (3.52) becomes 

U\/rvx/M)Jn < 1 , (3.60) 

Y Pv»E0 
2 Im(O) = 2 2-

M Vd'—yvs 

+l(vd'—yvs) \o)' (3.57) 

where 120 is the natural plasma frequency of the collec
tive system and the denominators are the geometric 
means of relaxation times which transfer momentum 
from the electrons to the phonons, and out of the phonon 
distribution, to either return to the electrons or be 
dissipated into the thermal background. 

The dispersion relation for the collective electron-
phonon wave can be described for various values of 
C/Q0. 

Case 1: C/Q0<1. For Q>Qo, the wave is that one de
scribed as an amplified collective-phonon wave in paper 
I, except that the frequency rises as Q —> Qo in a manner 
given by Eq. (3.51). The gain is given by Eq. (3.57), 
which is in close agreement with that found in paper I. 
For Q~Qo, the frequency is given by Eq. (3.53), where 

which is expected to be positive for Y/M>l/rp, i.e., 
whenever the phonon distribution can be excited out of 
equilibrium. Equation (3.56) becomes 

Q~h(vd'+yv.)Q. (3.61) 

2 Im(Q) = (4/?-SV+P/A - 1 2 ' 

.Q2 

~(l W - 7 * . ) — , (3.58) 
\ (?o2/ Qo 

in which the first two terms must be positive. The 
second term in Eq. (3.54) is just the geometric mean of 
the positive terms in Eqs. (3.52) and (3.56) and, there
fore, the Im(Q) in region 2 lies between the values for 
regions 1 and 3. The value of Im(O) approaches a fixed 

However, the slope of the dispersion relation can be 
zero or even negative. For some Q<Qo, the Im(Q) be
comes greater than Re (12), and the wave solutions no 
longer represent modes of the system. 

Case 2: C/Qo=l. In this case, there is no dispersion. 
The solution is 

Re(V) = yvsQ. (3.62) 

The lack of coupling, Eq. (3.60), or the large phonon 
growth rate, Eq. (3.59), causes the phonon fluctuations 
to dominate the collective behavior, and the electro
static fields cannot greatly effect the wave. For some 
Q<(CQo)1/2, the wave solutions cease to be a mode of 
the svstem, 
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J 

f 2 

fl'yvsQ 

FIG. 2. The dispersion relation for collective waves. The solid 
line is for C/QQ<1, the dotted line for C/Qo>l. For C = Q0, the 
curve would be the straight line with slope yvs ending at cutoff. 
In the intermediate region Q~Qo the group velocity of this wave 
can be very small, zero, or even negative. 

Case 3: C/Q0>1. In this limit, the large imaginary 
parts of the dispersion relation cause a reduction in the 
real frequency below the linear value yvsQ. For some 
Q<C, the waves cease to be a mode of the system. The 
dispersion curves are diagrammed in Fig. 2. 

IV. DISCUSSION AND CONCLUSION 

The description in Sec. II and the analysis in Sec. I l l 
are based on plane-wave solutions in bulk matter. The 
observed oscillations are expected to involve wave
lengths which are comparable to the size of the crystals. 
An exact solution of the oscillation problem would re
quire solutions of Eqs. (3.18)—(3.21), (3.3), and boundary 
condition (2.1). However, one can examine the be

havior of the oscillations approximately by assuming 
that (1) the solutions are close to plane-wave solu
tions, and (2) the boundary conditions select values of 
Q which are not very dependent on the parameters 
being varied. In the absence of large variations in ampli
tude of the collective wave (not to be confused with the 
changes in density which occur in a harmonic wave) 
along the crystal, the boundary conditions are approxi
mately satisfied by whole wavelengths. The smallest 
value of Q which satisfies the boundary conditions Q' 
will represent the fundamental mode expected to be 
most strongly coupled to the external circuitry. Oscilla
tions could occur at harmonics of this wavelength. 
This fundamental mode is in the long-, intermediate-, 
or short-wavelength region, depending on whether Q' 
is less, comparable to, or greater than Q0. 

Simplified versions of the collective-wave dispersion 
relations are diagrammed in Fig. 3. It is assumed that 
120>^/ and C/Q0< 1. In this figure, the frequency of the 
fundamental mode Q' can̂  be found for various values 
of O0 which is equivalent to various locations of the 
intermediate region. 120 can be varied by varying n0, the 
number of electrons. The lowest frequency solutions for 
a given Q' are 

tt=yvsQ' (4.1) 

at the edge of the short-wavelength region. In the inter
mediate region, 0 changes rapidly with £20. For large O0, 
the solution is in the long-wavelength region, and 

0 « l(vd'+yv,)/2-]Q'™ (vd+y/2vs)Q', (4.2) 

where it has been assumed that noZ/X is small. It is in 
the long- to intermediate-wavelength region where 
oscillations are most likely, because (a) the gain is 
greatest, and (b) the electrostatic fields which couple 
to the external circuitry are most important. 

FIG. 3. A simplified dispersion 
relation for various values of fi0. 
The intermediate region occurs 
at fi~Qo. In this region, the slope 
of the dispersion curve changes 
from i(v<i-}-yVs)~Vd to yvs. For a 
fixed wave vector Qf, the frequency 
Q, will be yvsQ

f for i2o«Gi<7fl«()'. 
It will rise with O0 for £20~^2> 
where VdQ'>®2>yvsQ', and satu
rate at VdQ' for O0«O3>z'dQ/. At 
fto~&4, the wave vector Q' will be 
below cutoff. 
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Figure 4 shows simplified dispersion curves in which 
Qo is held fixed and va is changed. For low values of va, 
Q' may be much less than Q0, and the fundamental mode 
would fall in the region of no-wave solutions. At higher 
Vdy Q' comes closer to the intermediate region and 
spontaneous oscillations may occur. Probably, higher 
harmonics of the fundamental mode would occur before 
the fundamental in such a case. 

The analysis in Paper I of the stimulated electron 
piezoelectric acoustic phonon interaction showed that 
the hot-phonon band discussed in Sec. I I would extend 
to phonon energies 

where 
1u*=km(Ta/T)u 

kTs=itn*vs
2, 

(4.3) 

(4.4) 

and k is Boltzmann's constant. The value of M in the 
active band below this value is 

M= 0.126(kTy/2m*3/2/¥v8
2. 

Also, based on the analysis in paper I, 

Y/X~i(vd-vs)/vs. 

In the limit A « F , 

25e2n2fihs
2 Vd~vs 

€(&r)5/2m*3/2 v, 

(4.5) 

(4.6) 

(4.7) 

When one substitutes the value appropriate to CdS into 
Eq. (4.7), 

O0« 10-8l(vd-vs)/v8J^n0. (4.8) 

The variation of frequency with electron density is 
reproduced from Ref. 1 in Fig. 5. 

ft'V.Q1 

fl«yvso* 

FIG. 4. A simplified dispersion curve for various values of Vd. 
For lowest values of VdQ'~viQ' <Qo, the wave with wave vector 
Q' will be below cutoff. For VdQ'^v^Q'^^, the wave will exist and 
have Q~VdQ'. At larger VdQ'~VzQ'>£lo, the frequency rise should 
saturate and O«Q0. 

The value of n0~lOu—1014 would place the funda
mental mode of the crystal in the intermediate-
wavelength region. In this case, the variation of fre
quency with changes in no could be explained by Fig. 3, 
which gives qualitative agreement with that observed. 
The lowest frequency observed corresponds to Q=yv8Q

f, 
which is at the edge of the short-wavelength region, i.e., 
fi0~ Oi in Fig. 3. The region of rapid change in frequency 
with n0 in Fig. 5 corresponds to the change in fl0 in the 
intermediate region, i.e., fti<120<^3 in Fig. 3. The ex
pected variation of £l0 is linear in n0 as is the experimen
tal variation of frequency in Fig. 5. The limiting fre
quency should occur upon entering the long-wavelength 
limit, as shown in Fig. 3, which depends on the voltage 
through the drift velocity, as shown in Fig. 4. The re-

FIG. 5. Frequency of the current 
oscillations for the lowest frequency 
mode of oscillations as a function of 
electron density for various applied 
electric fields. Ambient temperature 
of the CdS crystal was 25±2°C. 

w 300 h 
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100.0 VOLTS/Cm:*—A 
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1400 VOLTS/CmiD—a 
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duction in the frequency observed at largest no and E0 

would be due to an increase in the ratio of C/Q0. This 
brings the system close to the conditions of case 2, 
which lowers the frequency, as shown in Fig. 2. The in
crease in C/Qo comes from overdriving the phonon dis
tribution, as discussed above. The quantity Y in Eq. 
(3.59) depends on E0 and nQ. 

The oscillations observed in GaAs may fit this analy
sis.2 Larger values of no, smaller values of w* and larger 
Vd will increase 120. For w0~1014—1015, Vd~107, and 
tne*~0.02nte, the value of &0~109. The fundamental 
mode of crystals, of the order of 10_1 cm, would then be 
in the long- to intermediate-wavelength region, and the 
spontaneous oscillations observed would correspond 
roughly to the behavior exhibited in Fig. 4. 

I. INTRODUCTION 

TH E positive sign of the electronic component of 
the absolute thermoelectric power of the noble 

metals has been discussed recently in a series of theoret
ical papers.1"4 The electronic component Se° of the 
thermoelectric power depends on the way in which the 
area of the Fermi surface and the electron mean free 
path vary with the electron energy. In the free-electron 
model of a metal the energy dependence of both the 
area of the Fermi surface and the electron mean free 
path yield a negative term in the electronic thermo
electric power. When it was found that the Fermi sur
face in the noble metals is distorted and touches the 
zone boundaries, it was suggested1 that the area of the 
Fermi surface might decrease sufficiently rapidly with 
increasing energy of the electrons to yield a positive 
electronic thermoelectric power. However, it appears 
today that the positive value of Se° in the noble metals 

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 J. M. Ziman, Electrons and Phonons (Oxford University 
Press, Oxford, England, 1960), p. 399. 

2 J. M. Ziman, Advan. Phys. 10, 1 (1961). 
3 P. L. Taylor, Proc. Roy. Soc. (London) A275, 209 (1963). 
4 F. J. Blatt, Phys. Letters 8, 235 (1964). 

The large drift velocities required for oscillation could 
be necessary to bring the fundamental mode of the 
crystal to the high-<2 side of the cutoff, i.e., VdQ'—Qo-
Similarly, the high drift velocities may be necessary 
before strong electron-phonon coupling occurs. The 
theory developed in paper I should be limited to the 
cases where Vd—vs/vs<l, and the extrapolation to 
oscillations in GaAs, where va/v8 ~ 100, should be viewed 
with caution. 
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is caused by deviations from the free electron value of 
both the term contain'ng the area of the Fermi surface 
and the term containing the electron mean free path.2 

Since in the electronic thermoelectric power of a pure 
metal, the term containing the area of the Fermi sur
face and the term containing the electron mean free 
path always appear combined, it is usually not possible 
to measure each term separately. However, the term of 
Se° containing the electron mean free path can be 
determined separately by measuring the effect of the 
specimen size on the electronic thermoelectric power. 
In the present investigation the influence of the speci
men size on the electronic thermoelectric power is 
studied with high-purity gold foils in the temperature 
range between 77 and 296°K. From the results, the 
term of Se° containing the electron mean free path and 
the term containing the area of the Fermi surface are 
obtained separately. 

II. THEORY 

The absolute thermoelectric power S° of a pure metal 
consists of a contribution Se°, arising from the non-
equilibrium distribution of the conduction electrons, 
and a contribution Sg°, caused by the interaction be-
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The difference between the thermoelectric power of thin gold foils and a O.OlO-in.-diam gold wire was 
measured between 77°K and room temperature. The electrical resistance difference between the foils and the 
wire was determined simultaneously. From the experimental results, the energy dependence of the electron 
mean free path and of the area of the Fermi surface in gold was obtained. Both the electron mean free path 
and the area of the Fermi surface decrease with increasing electron energy, which is opposite to the behavior 
expected from the free-electron model of a metal. The electron mean free path obtained from the resist
ance measurements is in agreement with the value derived from the anomalous skin effect. 


